filmeu

Class Machine Learning II

  • Presentation

    Presentation

    This course aims to provide skills in the field of Deep Learning, equipping students with solid, structured knowledge that will enable them to understand theoretical concepts and develop code to solve practical ML problems.
  • Code

    Code

    ULHT6634-24450
  • Syllabus

    Syllabus

    1. Introduction: fundamentals of deep learning, nonlinear transformations and overfitting. 2. Artificial neural networks, backpropagation. and deep feedforward networks. 3. Implementation and training of deep neural networks 4. Optimization and regularization of feedforward networks. Training, testing and cross validation. 5. Convolution networks, theory and practice 6. Unsupervised deep learning with autoencoders 7. Representation and transfer learning 8. Generative models 9. Recurrent networks and problems with sequential data 10. Reinforcement learning 11. Practical aspects of deep network selection, application and optimization 12. Large Language Models
  • Objectives

    Objectives

    Understand The foundations of deep learning. Fundamentals of deep network computing. Optimization algorithms, activation functions, objective functions. Different deep network architectures and their usefulness: Dense, convolution, recurrent, generative models. Training and regularization of deep networks. The importance of data characteristics and of training, validation and test sets Be able to: Select appropriate models and loss functions for different problems. Use modern libraries for deep learning. Implement deep networks, optimize their hyper-parameters and train them. Evaluate the training of the models and the quality of the results. Know: Types of problems solved with deep networks. Architectures and regularization of deep networks. Model selection methods and hyper-parameters.
  • Teaching methodologies

    Teaching methodologies

    Lecturing consists of theoretical and practical classes. The theoretical component is essentially expository, the theory being presented together with concrete examples. In the practical component, practical programming problems related to the theory taught are developed and solved. In this course unit the evaluation includes the following elements: Theoretical assessment, in the form of written test, exercises, with a weight of 30% in the final grade (minimum grade: 9.5 points). Practical assessment (projects / programming problems / presentations), with a weight of 70% in the final grade (minimum grade: 9.5 points).
  • References

    References

    Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into deep learning. CUP, https://d2l.ai Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning . MIT Press. https://deeplearningbook.org  
  • Assessment

    Assessment

    A disciplina é teórico-prática, havendo uma alternância entre a componente expositiva e participativa. As aulas teóricas seguem o programa definido, apresentando os conceitos teóricos sustentados por exemplos práticos. A aprendizagem dos conceitos é validada através de pequenos exercícios em papel feitos durante a aula, que permitem ao professor aferir da eficácia das suas explicações. Nas aulas práticas os alunos aplicam os conceitos teóricos na resolução de exercícios de programação feitos em computador, de forma individual ou em grupo (máximo 3 elementos por grupo). As aulas práticas decorrem sempre em sintonia com as aulas teóricas da semana anterior.

     

    Avaliação Contínua:

    30% - 1 teste com nota mínima de 9.5 valores (componente teórica).

    70% - Projeto em grupos de 2/3 com defesa presencial em grupo. A nota do projeto tem nota mínima de 9.5 (componente prática).

     

    Época de recurso/especial:

    50% - Exame 50% - Project. É necessário ter 9.5 de nota mínima em cada componente para aprovar à disciplina.

SINGLE REGISTRATION
Lisboa 2020 Portugal 2020 Small financiado eu 2024 prr 2024 republica portuguesa 2024 Logo UE Financed Provedor do Estudante Livro de reclamaões Elogios