filmeu

Class Data Sciences in Biotechnology

  • Presentation

    Presentation

    This Course Unit aims to understand concepts associated with Data Science oriented to biotechnology and similar areas. The student is introduced to the mathematical formulation of tools in the domains of Statistics and Probability, which enable the implementation, development and interpretation of scripts in Python language. In this sense, through supervised and unsupervised learning mechanisms, the student is able to generate solutions that comprise processing, analysis and visualization of relevant data sets, which can be extensive (big data) or not.   The relevance of this Curricular Unit is also completed with the study and modeling of applications in the biotechnological domain, such as the prediction of diseases in living beings to effects in genetically modified crops, in order to support decision-making either in academic research or in biobusiness.  
  • Code

    Code

    ULHT6643-22371
  • Syllabus

    Syllabus

    Introduction to Data Science in Biotechnology Mathematical Preliminaries for Data Science Data Munging. Scores and Rankings Statistical Analysis Data Visualization Mathematical Models in Data Science Linear Algebra Linear and Logistic Regression Machine Learning Big Data
  • Objectives

    Objectives

    The main objective of this Course Unit is to provide the student with the main techniques and methodological principles of data acquisition, processing and interpretation in biotechnology, using computation via Python language. Thus, the student will be able to: understand, implement or develop simple quantitative, classification and predictive mathematical models based on existing data sets; understand, implement or develop methodologies that are based on computerized autonomous learning, via supervised and unsupervised mechanisms; and apply the Python programming language in the scope of Data Science to solve and infer problems in the area of ¿¿biotechnology.  
  • Teaching methodologies

    Teaching methodologies

    The theoretical classes present the program content, using presentations and simulations, stimulating discussion between students and teachers. In the theoretical-practical classes, students solve exercises with a progressive transition in complexity. Assessment may be continuous or non-continuous.  Continuous assessment: written test (theoretical component, CT) and submission of two exercises solved during the semester (theoretical-practical component, CTP). CT: completion of two tests or one exam. CTP consists of the submission of two solved exercises via Moodle and their discussion (40% exercises, 60% discussion), with no minimum grade. The final grade for the course unit is calculated as follows: Final Grade = 50% CT + 50% CTP
  • References

    References

    Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The  Elements  of  Statistical  Learning:  Data  Mining,  Inference,  and  Prediction. 2nd edition. Springer (ISBN-13: 978-0387848570) Laura Igual, Santi Segui (2017) Introduction  to  Data  Science:  A  Python  Approach  to  Concepts,  Techniques,  and  Applications. 1st edition. Springer (ISBN-13: 978-3319500164)  
  • Assessment

    Assessment

    Estão previstos os seguintes instrumentos de avaliação (individuais e de grupo). As datas sugeridas são apenas informativas, tratando-se de estimativas que podem ser alteradas.

    Descrição

    Data limite

    Instrumento e Modo de Avaliação

    Ponderação

    1º Teste

    até 20/Nov

    Instrumento de avaliação contínua

    50% (Componente Teórica)

    2º Teste

    até 15/Jan

    Instrumento de avaliação contínua

    50% (Componente Teórica)

    Frequência Global

    a designar na Pausa Pedagógica

    Instrumento de não avaliação contínua

    100% (Componente Teórica) caso o aluno não tenha optado por avaliação contínua

    Exame Época de Recurso

    a designar pela Faculdade de Engenharia

    Instrumento de não avaliação contínua

    Atribui a Nota FInal à Unidade Curricular

    Exame Época de Especial

    a designar pela Faculdade de Engenharia

     

    Instrumento de não avaliação contínua

    Atribui a Nota FInal à Unidade Curricular

    Trabalho Teórico-Prático I

    até 31/Out

    Instrumento de avaliação contínua

    50% (Componente Teórico-Prática)

    Trabalho Teórico-Prático II

    até 31/Dez

    Instrumento de avaliação contínua

    50% (Componente Teórico-Prática)

SINGLE REGISTRATION
Lisboa 2020 Portugal 2020 Small financiado eu 2024 prr 2024 republica portuguesa 2024 Logo UE Financed Provedor do Estudante Livro de reclamaões Elogios