-
Presentation
Presentation
A wide variety of fundamental mathematical methods are exposed, intending to cover a wide range of problems occuring in Life Sciences. In addition, an algebrization of some topics intends to induce a general reasoning which applies to several seemingly different problems occuring in many situations in this field of expertise.
-
Class from course
Class from course
-
Degree | Semesters | ECTS
Degree | Semesters | ECTS
Bachelor | Semestral | 4.5
-
Year | Nature | Language
Year | Nature | Language
1 | Mandatory | Português
-
Code
Code
ULHT101-16546
-
Prerequisites and corequisites
Prerequisites and corequisites
Not applicable
-
Professional Internship
Professional Internship
Não
-
Syllabus
Syllabus
Introduction to Natural, Integer, Rational and Real numbers. Main properties. Real sequences: Monotone and limited sequences. Convergent sequences. The number e. Functions: Domain. Codomain and graphic. Sum, product and composition of functions. Inverse function and its graphic representation. The exponencial function and its inverse. Limits, Continuity and Differenciability. Local Extremes and inflection points Álgebraic curves. Conical curves. Surfaces in space. Real Functions with vectorial variables. Domain, Tangent plane and local extreme points. Classification of improper integrals. Integration in space. Calculation of volumes.
-
Objectives
Objectives
To master the more significant techniques within Real Analysis. To allow a deeper knowledge in what concerns the structure of the field of real numbers, namely regarding graphic modeling. To identify and distinguish the more applicable issues from the more conceptual ones. Application of calculus techniques in several distinct areas and on a multidimensional level.
-
Teaching methodologies
Teaching methodologies
If time allows, some tópics will be presented, concerning the corresponding cycle of studies (Biology), whose modelation and ultimately its resolution, depend on tools that share affinities with the pending syllabus and may hopefully motivate students for durther investigations.
-
References
References
Sárrico, C.; Análise Matemática ¿ Leitura e exercícios, Col. Trajetos Ciência 4, Gradiva, Lisboa, 1999. Apostol, T.; Cálculo I, Editora Reverte.
-
Assessment
Assessment
Os alunos terão aprovação à disciplina se, tendo comparecido a 75% das aulas, tiverem como média dos 3 testes intermédios uma nota superior ou igual a 9.5 valores nunca sendo inferior a 5 em qualquer dos testes. Essa nota será a nota final, apenas suscetível de melhoria caso o(a) aluno(a) compareça na frequência final.
Tal frequência final,destina-se também a dar uma oportunidade aos alunos que não tenham obtido aprovação na avaliação contínua descrita no parágrafo anterior.
Exemplo:
Descrição
Data limite
Ponderação
Teste de avaliação 1
15-10-2024
33%
Teste de avaliação 2
15-11-2024
33%
Teste de avaliação 3
15/12/2024
33%
Frequência Final 15/1/2025 100%
-
Mobility
Mobility
No




