-
Presentation
Presentation
Genetics studies genes and how characteristics are transmitted from generation to generation, as well as gene expression and its modulation by intrinsic and extrinsic factors. From this perspective, this curricular unit is fundamental within the context of this degree program, as it provides a solid foundation for understanding cellular chemical processes. The theoretical component offers essential knowledge, which will later be applied in the practical component in the laboratory, through the use of various DNA analysis methodologies
-
Class from course
Class from course
-
Degree | Semesters | ECTS
Degree | Semesters | ECTS
Bachelor | Semestral | 5.5
-
Year | Nature | Language
Year | Nature | Language
2 | Mandatory | Português
-
Code
Code
ULHT101-954
-
Prerequisites and corequisites
Prerequisites and corequisites
Not applicable
-
Professional Internship
Professional Internship
Não
-
Syllabus
Syllabus
I. Structure and Organization of Genetic Material DNA and chromatin DNA replication and chromosome structure as the physical vehicle of genetic information; structure and function of replication origins, centromeres, and telomeres II. Gene Expression Processes: Transcription and Translation Transcriptional regulation mediated by regulatory proteins and chromatin conformation III. Prokaryotic and Eukaryotic Genomes IV. Genetic Information Regulation Processes Mutation and DNA repair mechanisms Transposons and repetitive sequences V. Classical Genetic Analysis Independently segregating genes (multiple alleles, lethal alleles, gene interactions, and sex-linked traits) VI. Basic Molecular Genetics Techniques – Practical Component: DNA extraction from eukaryotic cells and plasmids Spectrophotometry and electrophoresis in nucleic acid analysis Study of polymorphisms Restriction map analysis
-
Objectives
Objectives
The main objective of this curricular unit is to provide students with foundational knowledge in the scientific field of Genetics, fostering an understanding of the molecular mechanisms that control heredity and gene expression, namely: The molecular foundations of genetics, including DNA replication, RNA transcription, protein translation, and the mechanisms associated with mutation processes; The fundamental processes of gene expression, with emphasis on transcription, translation, and differential regulation strategies of gene expression in various cellular and physiological contexts; The principles and mechanisms of heredity, based on classical genetic laws and recent advances in molecular genetics. Beyond the theoretical concepts, the CU aims to equip students with a conceptual framework applicable to various scientific and professional contexts, particularly in the fields of biomedical research, clinical diagnostics, genetic therapies, and biotechnology.
-
Teaching methodologies
Teaching methodologies
With the aim of fostering critical thinking and enhancing students’ ability to apply acquired knowledge to real-world contexts, students will develop thematic seminars, guided by a problem-based learning (PBL) approach. The seminar topics will be selected based on current and relevant applications of genetics, such as: Diagnosis and prognosis of genetic diseases using genetic markers; Analysis of gene regulation mechanisms, including epigenetics and post-transcriptional regulation; Emerging technologies, such as CRISPR-Cas9 and gene editing; Bioethics and the social implications of genetic manipulation. Each seminar presentation will be followed by a structured discussion, encouraging participation from fellow students and promoting collaborative learning. This methodology not only strengthens knowledge retention but also develops key transversal skills such as teamwork, evidence-based argumentation, and scientific autonomy.
-
References
References
Griffiths, Anthony J.F.; Wessler, Susan R.; Carroll, Sean B.; Doebley, John. Introduction to Genetic Analysis 11 ed. W.H. Freeman. 2015 ISBN-13: 978-1464109485
-
Assessment
Assessment
Componente teórica
a) Realização de 2 provas escritas sobre os conteúdos lecionados nas aulas teóricas. É obrigatório um mínimo de 9,5 valores de nota média nas 2 provas escritas para a aprovação à UC.
b) Realização de um seminário integrando os conceitos apresentados nas aulas teóricas. O trabalho será apresentado oralmente.
Nota final = a (80%; 40% por prova escrita) + b (20%, 10% para componente escrita e 10% para componente oral)
Componente laboratorial
a) Pontualidade, participação em atividades propostas, capacidade de análise e discussão dos temas expostos, e desempenho nas aulas práticas/laboratoriais.
b) Realização de uma prova escrita sobre os conteúdos lecionados nas aulas laboratoriais. É obrigatório um mínimo de 9,5 valores nesta avaliação para a aprovação à UC.
c) Realização de 2 relatórios dos trabalhos de laboratoriais, sendo que está inerente uma avaliação oral
Nota final = a (5%) + b (35%) + c (60%)
Peso total relativo para nota Final = 50% nota componente teórica + 50% nota componente prática
Exame de Recurso
Serão admitidos a exame de recurso, os alunos que não tenham alcançado resultado positivo na avaliação contínua. A primeira parte do exame incluirá conteúdos abordados nas aulas teóricas e práticas. A segunda parte do exame incidirá sobre os temas e procedimentos experimentais/exercícios desenvolvidos nas aulas laboratoriais/práticas. O aluno será aprovado caso obtenha uma nota final global igual ou superior a 9,5 val.
Exame de melhoria de nota
O exame de melhoria da componente teórica e prática será realizado por teste escrito durante a época de recurso.
-
Mobility
Mobility
No




