filmeu

Class Mathematics for Biochemistry

  • Presentation

    Presentation

    This Curricular Unit intends to supply Students with centenary techniques around Differential and Integral Calculus and provide its application.  Such applicability should be read in a broader sense: In general, mental schemes types require clear technical tools throughout the academic course. 
  • Code

    Code

    ULHT2532-16913
  • Syllabus

    Syllabus

    1.      Introduction to Natural, Integer, Rational and Real numbers. Main properties. 2.      Real sequences: Monotone and limited sequences. Convergent sequences. The number e. 3.      Functions:  Domain. Codomain and graphic.  Sum, product and composition of functions. Inverse function and its graphic representation. 4.      The exponencial function and its inverse. 5.      Limits, Continuity and Differenciability. 6.     Local Extremes and inflection points 7.     Real Functions with vectorial variables. Domain, Tangent plane and local extreme points. 8.   Antiderivation: Basic techniques. Rational functions. 9.                Integration of real functions: The fundamental theorem of integral calculus                Classification of improper integrals.  10. Integration in space. Calculation of volumes
  • Objectives

    Objectives

    To master the more significant techniques within Real Analysis. To allow a deeper knowledge in what concerns the structure of the field of real numbers, namely regarding graphic modeling. Application of calculus techniques in several distinct areas. 
  • Teaching methodologies

    Teaching methodologies

    If time allows, some topics emerging from the cycle of studies (Biochemistry) will be modelated and ultimately solved using methods (namely, Differential Equations) that though  not included in syllabus shae affinity and will motivate the student towards some mathematical sophistication.
  • References

    References

      - Apostol, T. (1994). Cálculo (Volume I). Editora Reverte.  - Sárrico, C. (1999). Análise Matemática ¿ Leitura e exercícios. Col. Trajectos Ciência 4, Gradiva,  Lisboa.   
  • Assessment

    Assessment

    Os alunos terão aprovação à disciplina se, tendo comparecido a 75% das aulas, tiverem como média dos 3 testes intermédios uma nota superior ou igual a 9.5 valores nunca sendo inferior a 5 em qualquer dos testes. Essa nota será a nota final, apenas suscetível de melhoria caso o(a) aluno(a) compareça na frequência final.

    Tal frequência final,destina-se também a dar uma oportunidade aos alunos que não tenham obtido aprovação na avaliação contínua descrita no parágrafo anterior.

    Exemplo:

    Descrição

    Data limite

    Ponderação

    Teste de avaliação 1

    15-10-2025

    33%

    Teste de avaliação 2

    15-11-2025

    33%

    Teste de avaliação 3

    15/12/2025

    33%

    Frequência Final                 15/1/2025             100%

     

     

SINGLE REGISTRATION
Lisboa 2020 Portugal 2020 Small financiado eu 2024 prr 2024 republica portuguesa 2024 Logo UE Financed Provedor do Estudante Livro de reclamaões Elogios