-
Presentation
Presentation
This Curricular Unit intends to supply Students with centenary techniques around Differential and Integral Calculus and provide its application. Such applicability should be read in a broader sense: In general, mental schemes types require clear technical tools throughout the academic course.
-
Class from course
Class from course
-
Degree | Semesters | ECTS
Degree | Semesters | ECTS
Bachelor | Semestral | 4.5
-
Year | Nature | Language
Year | Nature | Language
1 | Mandatory | Português
-
Code
Code
ULHT2532-16913
-
Prerequisites and corequisites
Prerequisites and corequisites
Not applicable
-
Professional Internship
Professional Internship
Não
-
Syllabus
Syllabus
1. Introduction to Natural, Integer, Rational and Real numbers. Main properties. 2. Real sequences: Monotone and limited sequences. Convergent sequences. The number e. 3. Functions: Domain. Codomain and graphic. Sum, product and composition of functions. Inverse function and its graphic representation. 4. The exponencial function and its inverse. 5. Limits, Continuity and Differenciability. 6. Local Extremes and inflection points 7. Real Functions with vectorial variables. Domain, Tangent plane and local extreme points. 8. Antiderivation: Basic techniques. Rational functions. 9. Integration of real functions: The fundamental theorem of integral calculus Classification of improper integrals. 10. Integration in space. Calculation of volumes
-
Objectives
Objectives
To master the more significant techniques within Real Analysis. To allow a deeper knowledge in what concerns the structure of the field of real numbers, namely regarding graphic modeling. Application of calculus techniques in several distinct areas.
-
Teaching methodologies
Teaching methodologies
If time allows, some topics emerging from the cycle of studies (Biochemistry) will be modelated and ultimately solved using methods (namely, Differential Equations) that though not included in syllabus shae affinity and will motivate the student towards some mathematical sophistication.
-
References
References
- Apostol, T. (1994). Cálculo (Volume I). Editora Reverte. - Sárrico, C. (1999). Análise Matemática ¿ Leitura e exercícios. Col. Trajectos Ciência 4, Gradiva, Lisboa.
-
Assessment
Assessment
Os alunos terão aprovação à disciplina se, tendo comparecido a 75% das aulas, tiverem como média dos 3 testes intermédios uma nota superior ou igual a 9.5 valores nunca sendo inferior a 5 em qualquer dos testes. Essa nota será a nota final, apenas suscetível de melhoria caso o(a) aluno(a) compareça na frequência final.
Tal frequência final,destina-se também a dar uma oportunidade aos alunos que não tenham obtido aprovação na avaliação contínua descrita no parágrafo anterior.
Exemplo:
Descrição
Data limite
Ponderação
Teste de avaliação 1
15-10-2025
33%
Teste de avaliação 2
15-11-2025
33%
Teste de avaliação 3
15/12/2025
33%
Frequência Final 15/1/2025 100%
-
Mobility
Mobility
No




